Codes, Designs and Graphs from the Janko Groups

نویسندگان

  • J. D. Key
  • J. Moori
چکیده

We construct some codes, designs and graphs that have the first or second Janko group, J1 or J2, respectively, acting as an automorphism group. We show computationally that the full automorphism group of the design or graph in each case is J1, J2 or J̄2, the extension of J2 by its outer automorphism, and we show that for some of the codes the same is true.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Optimal Codes From Designs

The binary and ternary codes spanned by the rows of the point by block incidence matrices of some 2-designs and their complementary and orthogonal designs are studied. A new method is also introduced to study optimal codes.

متن کامل

Double circulant codes from two class association schemes

Two class association schemes consist of either strongly regular graphs (SRG) or doubly regular tournaments (DRT). We construct self-dual codes from the adjacency matrices of these schemes. This generalizes the construction of Pless ternary Symmetry codes, Karlin binary Double Circulant codes, Calderbank and Sloane quaternary double circulant codes, and Gaborit Quadratic Double Circulant codes ...

متن کامل

Permutation decoding for codes from designs, finite geometries and graphs

The method of permutation decoding was first developed by MacWilliams in the early 60’s and can be used when a linear code has a sufficiently large automorphism group to ensure the existence of a set of automorphisms, called a PD-set, that has some specifed properties. These talks will describe some recent developments in finding PD-sets for codes defined through the row-span over finite fields...

متن کامل

Torsion units in integral group rings of Janko simple groups

Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of integral group rings of Janko simple groups. As a consequence, for the Janko groups J1, J2 and J3 we confirm Kimmerle’s conjecture on prime graphs.

متن کامل

Enumeration of symmetric ( 45 , 12 , 3 ) designs with nontrivial automorphisms ∗

We show that there are exactly 4285 symmetric (45,12,3) designs that admit nontrivial automorphisms. Among them there are 1161 self-dual designs and 1562 pairs of mutually dual designs. We describe the full automorphism groups of these designs and analyze their ternary codes. R. Mathon and E. Spence have constructed 1136 symmetric (45,12,3) designs with trivial automorphism group, which means t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002